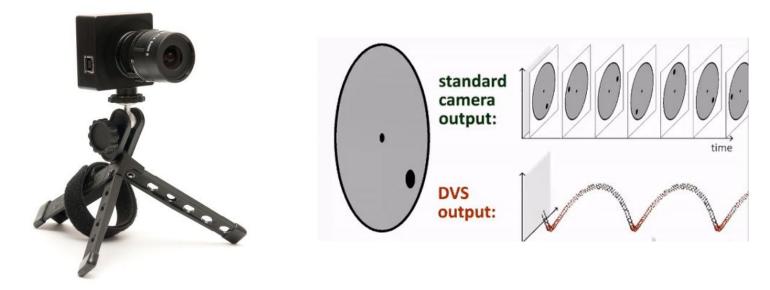
Self-Supervised Event-Intensity Stereo Matching

El 2023, San Francisco, United States

Jinjin Gu, <u>Jinan Zhou</u>, Ringo Sai wo Chu, Yan Chen, Jiawei Zhang, Xuanye Cheng, Song Zhang, Jimmy S. Ren


What is Stereo Matching?

- A process to **infer depth** from two or more cameras.
- Require rectifying stereo images, compute depth from matched pixels
- Application including AR/VR, Self-Driving Cars

HoloLens 2

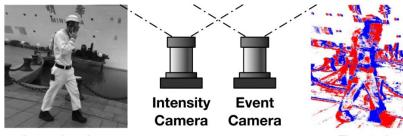
Event Camera

- Dubbed 'Silicon Retina', as Event Cameras mimic the human visual system
- Bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames

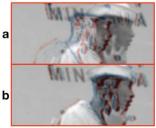
Why Event Camera?

High Dynamic Range
No Motion Blurring
Low Latency
High Temporal Resolution

But...

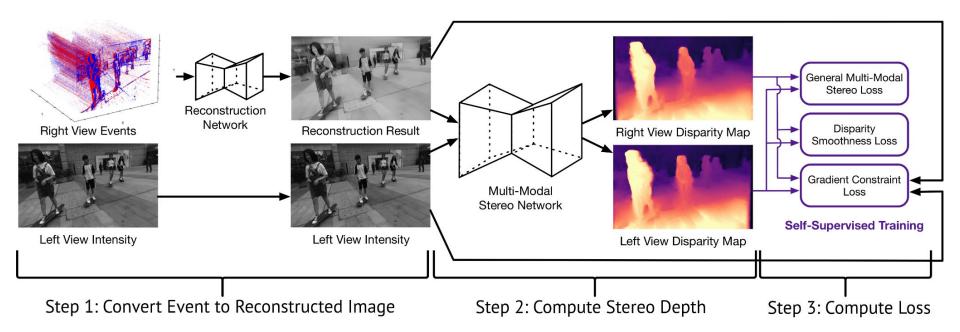

Straditional frame-based algorithm does not apply, due to asynchronous pixels and no intensity information

Motivation

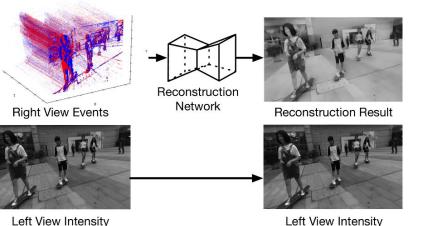

Event-Intensity Stereo: Combining a Frame camera and an Event Camera for Stereo

Absorb the advantages from both modality.

• A Self-Supervised Learning Paradigm Mitigate multi-modal data collection and processing.

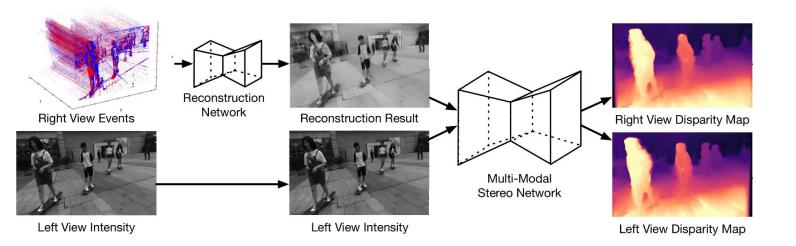

Intensity view

Event view

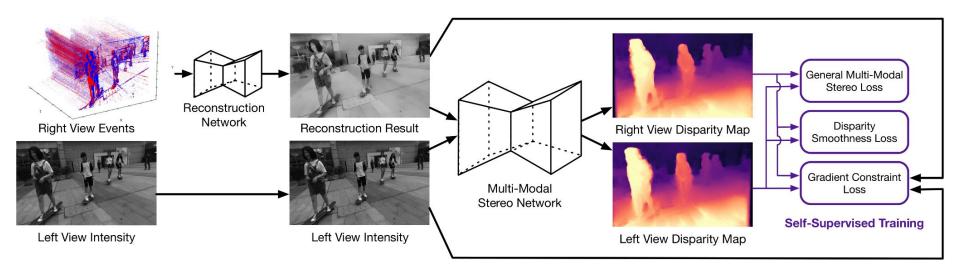

Depth

Event Alignment

Our Method Overview



Our Method Overview - Event Reconstruction


- en view intensity
- Obtain a coarse image reconstruction from events.
- Off-the-shelf reconstruction model. Such as FireNet or E2VID

Our Method Overview - Stereo Matching

- Off-the-Shelf Stereo matching models, with minor changes
- Instead of weight sharing backbone, we use different backbones for modalities

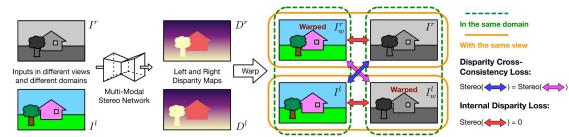
Our Method Overview - Self-Supervised Training

• **Self-Supervised Training Loss:** Gradient Structure Loss + Disparity Smoothness Loss + General-Modal Stereo Loss

Self-Supervised Loss Function - Part 1

• Image Structure Loss - Use image gradient for structure information

$$\mathcal{L}_{gd} = 1 - \frac{2\mu_{G^l}\mu_{G^r} + c_1}{\mu_{G^l}^2 + \mu_{G^r}^2 + c_1} \times \frac{2\sigma_{G^lG^r} + c_2}{\sigma_{G^l}^2 + \sigma_{G^r}^2 + c_2}$$


Self-Supervised Loss Function - Part 2

• Disparity Smoothness Loss

$$\mathcal{L}_{\rm sm} = \frac{1}{N} \sum_{i,j} |\nabla_x D_{ij}| e^{-|\nabla_x I_{ij}|} + |\nabla_y D_{ij}| e^{-|\nabla_y I_{ij}|}$$

Self-Supervised Loss Function - Part 3

• General Multi-Modal Stereo Losses

With the above information, we propose cross-consistency loss,

$$\mathcal{L}_{cc} = \frac{1}{N} \sum_{i,j} \left| |D^l| - |D^r_{\mathbf{w}}| \right| + \left| |D^r| - |D^l_{\mathbf{w}}| \right|$$

And internal disparity Loss, D_{itn}^r from I^r , I_{wrap}^r and D_{itn}^l from I^l I_{wrap}^l

$$\mathcal{L}_{ ext{itn}} = rac{1}{N} \sum_{i,j} |D^r_{ ext{itn}}| + |D^l_{ ext{itn}}|$$

Experiment Setup

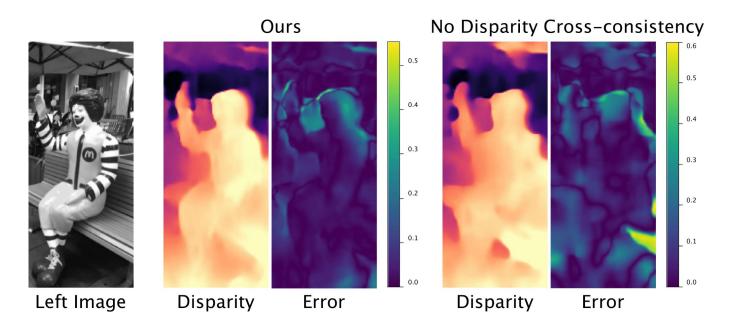
• Synthetic Dataset -

Taken from Stereo Blur Dataset - Argument with frame interpolation from 60FPS to 2400FPS, followed by V2E event simulator for event generation.

• Real Dataset -

MVSEC - contains the stereo intensity images and events captured by DAVIS 240C

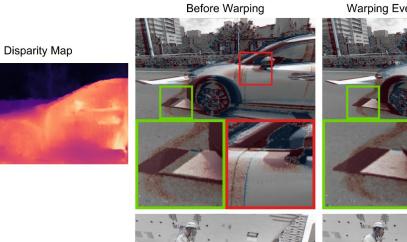
Results

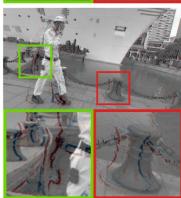

Model	EDE	Bad Pixels ↓		
	EPE↓	$\delta > 1$	$\delta > 3$	$\delta > 5$
Monodepth2	8.849	0.953	0.781	0.648
DeepPruner (upper bound)	0.712	0.123	0.027	0.015
FireNet+AANet (baseline)	4.811	0.649	0.419	0.336
E2VID+AANet (baseline)	5.154	0.673	0.440	0.379
FireNet+DeepPruner (baseline)	10.29	0.417	0.226	0.181
E2VID+DeepPruner (baseline)	6.386	0.381	0.184	0.140
FireNet+AANet* (\mathcal{L}_{gd} and \mathcal{L}_{sm})	1.591	0.366	0.139	0.088
E2VID+AANet* (\mathcal{L}_{gd} and \mathcal{L}_{sm})	1.496	0.351	0.123	0.075
FireNet+DeepPruner* (\mathcal{L}_{qd} and \mathcal{L}_{sm})	1.336	0.355	0.123	0.068
E2VID+DeepPruner* (\mathcal{L}_{gd} and \mathcal{L}_{sm})	1.321	0.355	0.116	0.068
FireNet+AANet (all losses)	1.988	0.409	0.189	0.134
E2VID+AANet (all losses)	1.775	0.378	0.166	0.117
FireNet+DeepPruner (all losses)	1.626	0.377	0.147	0.097
E2VID+DeepPruner (all losses)	1.57	0.368	0.143	0.094
FireNet+AANet* (all losses)	1.201	0.306	0.110	0.065
E2VID+AANet* (all losses)	1.101	0.287	0.094	0.057
FireNet+DeepPruner* (all losses)	0.971	0.317	0.087	0.049
E2VID+DeepPruner* (all losses)	0.913	0.289	0.074	0.042

<u>On synthetic dataset 👍</u>

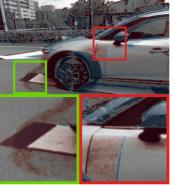
Madal	EDE	Bad Pixels ↓		
Model	EPE ↓	$\delta > 1$	$\delta > 3$	$\delta > 5$
Monodepth2	10.235	0.914	0.844	0.768
E2VID+AANet (baseline)	11.332	0.954	0.864	0.776
E2VID+AANet (all losses)	5.830	0.736	0.660	0.434
E2VID+DeepPruner (all losses)	4.979	0.673	0.581	0.384
E2VID+AANet* (all losses)	2.734	0.653	0.330	0.197
E2VID+DeepPruner* (all losses)	2.397	0.601	0.268	0.164
	0.000	110000	and the second second	

<u>On real dataset 👍</u>


Visualisation



Visualisation



Visualisation

Warping Event to Intensity

Frame Interpolation using Events

Limitation

• Performance degradation when Event Intensity Reconstruction produces low-quality results.

Conclusion

- We propose Event-Intensity Stereo- A novel multi-modal stereo setup with standalone event and frame camera.
- We propose a self-supervised loss formulated from image gradient structure loss, disparity smoothness loss, cross-consistency and internal consistency
- Our method is robust to synthetic and real dataset.

Thank You!