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What is Stereo Matching?

e A process to infer depth from two or more cameras.

e Require rectifying stereo images, compute depth from
matched pixels

e Application including AR/VR, Self-Driving Cars




Event Camera

Dubbed ‘Silicon Retina’, as Event Cameras mimic the human

visual system
Bio-inspired vision sensors that output pixel-level brightness

changes instead of standard intensity frames
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Why Event Camera?

~ High Dynamic Range

) No Motion Blurring

) Low Latency

~) High Temporal Resolution

But...

=) Traditional frame-based algorithm does not apply, due to
asynchronous pixels and no intensity information



Motivation

e Event-Intensity Stereo: Combining a Frame camera and an
Event Camera for Stereo
Absorb the advantages from both modality.

e A Self-Supervised Learning Paradigm
Mitigate multi-modal data collection and processing.
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Our Method Overview
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Step 1: Convert Event to Reconstructed Image Step 2: Compute Stereo Depth Step 3: Compute Loss




Our Method Overview - Event Reconstruction
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e Obtain a coarse image reconstruction from events.
e Off-the-shelf reconstruction model. Such as FireNet or E2VID



Our Method Overview - Stereo Matching
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e Off-the-Shelf Stereo matching models, with minor changes
e Instead of weight sharing backbone, we use different
backbones for modalities



Our Method Overview - Self-Supervised Training
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e Self-Supervised Training Loss: Gradient Structure Loss +
Disparity Smoothness Loss + General-Modal Stereo Loss



Self-Supervised Loss Function - Part 1

e Image Structure Loss - Use image gradient for structure
information
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Self-Supervised Loss Function - Part 2

e Disparity Smoothness Loss
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Self-Supervised Loss Function - Part 3

e General Multi-Modal Stereo Losses
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With the above information, we propose cross- con5|stency loss,

CC=N2||DI

And internal disparity Loss, D, from [7, I" and D}
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Experiment Setup

e Synthetic Dataset -
Taken from Stereo Blur Dataset - Argument with frame
interpolation from 60FPS to 2400FPS, followed by V2E
event simulator for event generation.

e Real Dataset -
MVSEC - contains the stereo intensity images and events
captured by DAVIS 240C



Results

Bad Pixels |
Model HEE 4 d>1 >3 6>5
Monodepth2 10235 0914 0.844 0.768
E2VID+AANet (baseline) 11.332 0954 0.864 0.776
E2VID+AANet (all losses) 5.830 0.736 0.660 0.434
E2VID+DeepPruner (all losses) 4979 0.673 0.581 0.384
E2VID+AANet* (all losses) 2.734 0.653 0330 0.197
2397 0.601 0.268

E2VID+DeepPruner* (all losses)

0.164

Bad Pixels |
R s d>1 6>3 46>5
Monodepth2 | 8.849 0953 0.781 0.648
DeepPruner (upper bound) | 0712  0.123  0.027 0.015
FireNet+AANet (baseline) 4.811 0.649 0419 0.336
E2VID+AANet (baseline) 5.154 0.673 0440 0.379
FireNet+DeepPruner (baseline) 10.29 0417 0.226 0.181
E2VID+DeepPruner (baseline) 6.386  0.381 0.184 0.140
FireNet+AANet* (L 4 and L,,,) 1.591 0366 0.139 0.088
E2VID+AANet* (L, and L,,,,) 1.496  0.351 0.123  0.075
FireNet+DeepPruner* (£,, and L,,,) 1.336 0355 0.123  0.068
E2VID+DeepPruner* (L,; and L,,,) 1.321 0355 0.116 0.068
FireNet+AANet (all losses) 1.988 0409 0.189 0.134
E2VID+AANet (all losses) 1.775 0378 0.166 0.117
FireNet+DeepPruner (all losses) 1.626 0.377 0.147 0.097
E2VID+DeepPruner (all losses) 1557 0.368 0.143 0.094
FireNet+AANet* (all losses) 1.201 0306 0.110 0.065
E2VID+AANet* (all losses) 1.101 0.287 0.094 0.057
FireNet+DeepPruner* (all losses) 0.971 0.317 0.087 0.049
E2VID+DeepPruner* (all losses) 0913 0289 0.074 0.042

On synthetic dataset

On real dataset -




Visualisation
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Visualisation
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Limitation
Performance degradation when Event Intensity
Reconstruction produces low-quality results.

Conclusion
We propose Event-Intensity Stereo- A novel multi-modal
stereo setup with standalone event and frame camera.

We propose a self-supervised loss formulated from image
gradient structure loss, disparity smoothness Loss,

cross-consistency and internal consistency

Our method is robust to synthetic and real dataset.



Thank
You!



