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Abstract

Stereo matching, a technique used to capture depth for
3D applications, has been revolutionized by learning
algorithms, particularly in how they construct stereo
cost volumes. Each cost volume construction method
comes with its unique benefits and limitations. This
paper attempts a new approach for constructing such
stereo costs, In particular, we propose a Transformer
model that learns self and cross attention within local
square and rectangle windows, along with epipolar shift
to expand the search scope. The resulted matching cost
from our Transformer can produce high quality dispar-
ity, as evidenced by competitive performance on public
datasets. Additionally, our model showcases robustness
against our designed stereo attacks.

Introduction
Depth is an integral component in numerous computer vi-
sion systems and applications. Stereo systems replaces ex-
pensive LiDAR for autonomous vehicles; Augmented reality
and Medical Imagaing systems relies on accurate depth for
3D reconstructions. So far researchers have thrived on de-
veloping advance methods for stereo matching, particularly
focusing on construction and processing of cost volumes for
depth estimation.

The advent of new learning algorithms has pioneered
traditional stereo approaches. With advances of deep neu-
ral nets, the key foundation for successful stereo matching
lies on how cost volume is constructed. For instance, Disp-
Net Mayer et al. (2016) creates a correlation cost volume
via patch similarity; GCNet Kendall et al. (2017) constructs
a cost volume by concatenating image features at various
disparity levels; GwCNet Guo et al. (2019) integrate fea-
ture concatenation and correlation for a cost volume; Stereo
Transformer Li et al. (2021) computes cost metric by series
of self and cross attention on epipolar line pixels. However,
each of these methods has its strengths and weaknesses.
DispNet Mayer et al. (2016) and Stereo Transformer Li et al.
(2021) offers efficiency but sacrifices representation learning
power; GCNet Kendall et al. (2017) and GwCNet Guo et al.
(2019) demonstrates robust performance, but the use of 3D
convolutions limits computation efficiency. The main moti-
vation of this paper is to explore a new way for constructing
a stereo matching cost volume.

Conversely, Transformer networks have recently demon-
strated vast potential in the field of vision. Particularly,
we observe the use of Transformer for solving correspon-
dence Jiang et al. (2021) with cross attention. However,
stereo matching is more concerned with dense correspon-
dence within small displacement changes. As such we de-
vise a strategy to perform attention within local rectangles
windows for our task. To achieve our goal, we extends the
self-attention in the Transformer layer to compute self and
cross attention from two input features. This newly formu-
lated attention is applied within local square and rectangular
windows to learn features and compute the matching score.
However, as highlighted in Figure 2a), missing correspon-
dence could occur if the match lies in neighboring window.
To address this, We use epipolar shift to displace attention
windows for the target feature horizontally to the search di-
rection, effectively expanding the search scope. We directly
use the attention score from the Transformer with position
adjustment to retrieve a full cost volume for disparity re-
gression. Lastly, we add a restoration module to refine loss
image details due to low resolution processing. We depict
our method in Figure 1.

We perform comprehensive experiments on various popu-
lar datasets, including SceneFlow, KITTI, ETH3D, Middles-
bury, and MPI Sintel. Our design demonstrates comparable
and competitive performance on these benchmarks against
other published methods. We deploy adversarial attacks, in-
cluding wide baselines and visually imbalance, as analogies
to evaluate our model’s robustness in common practical sce-
narios. Under such attacks, our approach perform robustly
compared to other models. By conducting ablation studies
on key components, we validate the efficacy of the design
choices implemented in our model. In addition, our visual-
izations show that our model is capable of generating high-
quality disparity maps for difficult regions, as well as for
previously unseen domains.

Although our network employs fairly standard compo-
nents, we tackle stereo matching through a sequence of op-
erations, thereby removing the need for custom learning lay-
ers or modules. Contrary to conventional wisdom, we aim to
show that basic components can make a good stereo match-
ing model. The following sections will provide a detailed
overview of our approach, a discussion on related work, and
an outline of our experiments.
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Figure 1: Our overall approach is depicted in the figure and composed of the following steps: ➀ A weight-sharing backbone
is used to obtain a downsampled stereo feature embedding at 1

4 resolution. ➁ We stack window self and cross attention Trans-
former layers, utilizing square and rectangular, diagonal and epipolar shift windows to extract deep features and matching
scores. ➂ We adjust the dimension of the matching score to retrieve standard cost volume for disparity Regression. ➃ Lastly,
we use a refinement module to recover lost disparity details.

Method
The goal of rectified stereo matching is to estimate the hor-
izontal offsets for both reference and target images, IL and
IR. Our approach primarily centers on computing cross-
attention for two image inputs within local windows. Each
window maintains width size of sw, covering at least the dis-
parity search range D. So that the attention score in Trans-
former layer measures the corresponding matching pixels
along the horizontal scanline.

However, utilizing local windows for correspondence
could limit the search scope. For example, the correct corre-
spondence match might be found within adjacent windows.
Our model addresses this issue by implementing an epipo-
lar shift at every successive layer. This shift enables the at-
tention window in the target image to move horizontally,
thereby facilitating cross-window matching. Our model is
illustrated in Figure 1, with each component detailed exten-
sively in the subsequent sections.

Shallow Feature Extraction
Contrary to conventional vision Transformer, we use con-
volution layers instead of patch embedding and linear pro-
jection. This substitution enhances the model’s convergence
ability Xiao et al. (2021); Wu et al. (2021). In our model,
we stack three ConvNeXt Liu et al. (2022) blocks as a shal-
low feature extractor. This configuration allows us to down-
sample input images to xL, xR ∈ RC×H×W . The backbone
weight is shared across both image inputs. We set the out-
put channel C = 96, H and W are set to 1

4 of the input
resolution of IL and IR.

The Transformer Design
A critical aspect of our task is to produce deep features capa-
ble of encapsulating the similarity and mutual dependencies
between xL and xR. To accommodate our needs, we extend
the vanilla attention layer for our Transformer to compute
self and cross attention in a single pass.

Window Self and Cross Attention. Assuming we have
input features xL

l , x
R
l , with l denotes the layer index. The

features are partitioned into attention windows of size sh ×
sw. The partitioned feature will then be represented as

x̂L
l , x̂

R
l ∈ R

HW
sh×sw×sh×sw. Following this, we perform

multi-head self-attention (MSA) on the concatenated feature
zl ∈ R(2×sh×sw)×C from xL

l and xR
l . Formally, we express

the attention scheme in the following:
zl = [x̂L

l ∥ x̂R
l ], (1)

ol = MSA(zl), ol = [oLl ∥ oRl ], (2)

Here ∥ signifies the concatenation operation.
Regarding MSA, the input feature zl will be split into m

heads, and thus, the attention hm for specific m-th head for
zml will then can be computed as

qm
l = zml Wq

m, km
l = zml Wk

m, vm
l = zml Wv

m (3)

Am
l = qm

l (km
l )T , (4)

hm = Softmax(
Am

l√
d

+B)vm
l , (5)

where Wq,Wk,Wv ∈ RC×d are the projection metrics for
weights, with d as the divided channel dimension. B is the
learnable relative position bias. A ∈ R(2×sh×sw)2 is the at-
tention score. The final output o of MSA is the concatenation
of all output heads o = [h1...hm]W all. Finally, we perform
patch merging to retrieve xL

l+1, x
R
l+1 from attention output.

We claim that our attention scheme can captures the com-
binations of self and cross attention information from two in-
put features. Moreover, as we compute attentions within lo-
cal windows, which can effectively mitigate quadratic com-
plexity in standard Transformer.
Attention Score as Matching Score. Considering that
stereo matching predominantly focuses on pixel correspon-
dence along the epipolar line. With such motivation, we
partition input features xL

l , xR
l into rectangular windows,

thus allows the capture of horizontal pixel-wise correspon-
dences through the lens of cross-attention. We use such
cross-attention score information as our matching score.
More formally, we set window width sw to maximum dis-
parity search range D, and sh is defined with a small vertical
offset.

Nonetheless, pixel matching follows a monotonic order,
implying that a subsequent match pi(j−1) can only position
on the left of the previous match pij on the target image.



So it poses a challenge: the potential correspondence might
exist outside its local window, as illustrated in Figure 2a).
A naive solution would be to extend the window width sw,
but this could result in extra computational demands. We ad-
dress our concern with with epipolar shift, where we display
the attention window for xR

l on their l+1 layer in the search
direction, as showcased in Figure 2b).

Considering the features x̂L
l and x̂R

l that are already par-
titioned into rectangle sized windows (sh,D). We denote
the window position using indices i and j, where i and j
are respectively ranges from [1...Hsh ] and [1...WD ]. When for-
warding input features to the Transformer with rectangular
windows, specifically for the l-th layer, we perform window
attention with x̂L

(i,j) and x̂R
(i,j) with attention score Al as the

intermediate output. In the subsequent l + 1 layer, epipolar
shift shifts the attention window for target view feature x̂R

l
horizontally by −D. As a result, the attention Al+1 in this
layer is computed from x̂L

(i,j) and x̂R
(i,j−1). Up to this step,

we concatenate two attention maps to form [Al∥Al+1] to ac-
cess a matching score with an expanded search range. We
adopt cyclic-shifting when window index i = 0. We com-
pare our shift scheme with diagonal shift Liu et al. (2021) in
Figure 2c).

The proposed shift offers the advantage of expanding the
disparity search range without the need for large windows.
Additionally, we set a small vertical window height to for
model to learn spatial context and handle unaligned matches.
Overall Transformer Configuration. Our Transformer
network comprises N stages, with each stage containing
four Transformer layers. The first two layers equips self and
cross attention of square window sized sh, sw = 8, 8, with
overlapping diagonal shifts in the second layer. The last two
layers equips the same attention with rectangular windows
sized sh, sw = 4, 481, incorporating epipolar shifts in the
fourth layer. The transformer outputs the concatenated at-
tention score from the last two attention layers in the final
stage. Configurations within our network set the MLP ex-
pansion ratio to r = 2.66, the number of MSA heads to
m = 4, number of stages N = 8. We adopt ReLU as the
default choice for the activation function.

Post-Processing
Matching Score Adjustment. At this point, we use the
attention from the Transformer, as the matching score for
disparity map generation. Upon closer inspection, the atten-
tion score is essentially a collection of local relative match-
ing maps that incorporate a combination of self and cross-
attention from two feature windows, as shown in Figure 3a.
For the sake of simplicity, our model directly uses the ’left-
to-right’ cross-attention slice expressed the attention score
as the matching score for further processing.

Specifically, each local matching scores holds dimensions
of (sh × sw) × (2 × sh × D), as D = sw. We apply a
conv1×1 to reduce the extra window height dimension to
(sh× sw)× (2×D). Given that each window contains rel-
ative matching information, we adjust the disparity dimen-

1We later set maximum disparity to 192, therefore the down-
sampled disparity range is calculated as 192/4 = 48

Reference Feature Target Feature

c) Diagonal Shift: Window/Shifted Window 

b) Epipolar Shift: Window/Shifted Window 

a) Example of Matching Failure with Local Windows

Figure 2: (a) Utilizing local windows could result in unsuc-
cessful match finding, as indicated by the yellow dot mark-
ing the correspondence point. (b) Epipolar shift is depicted
here. In layer l+1, only the attention windows for the tar-
get view feature are displaced horizontally. The boxes are
slightly misaligned for the purpose of visualization. (c) The
diagonal shift in Swin Transformer Liang et al. (2021). Blue
represents the window position in layer l, Green indicates
the shifted window position in the successive layer l + 1.

sion so that each pixel holds a displacement probability vec-
tor from its perspective. We set a lower triangle pivot at the
intersection point, and roll the disparity vector to the width
dimension, as illustrated in Figure 3b. We then de-partition
all windows all windows to recover per-pixel unaries match-
ing cost volume M̂ ∈ RH×W×2D that have been widely
deployed in Convolution apporaches, as shown in Figure 3c.

Upsampling. We use a two-layered convolution to enforce
locality coherence for M̂ . We upsample the cost volume fea-
ture to the original resolution using nearest neighbour in-
terpolation, and means to circumvent over-smoothing, often
seen with bilinear interpolation. We follow the design prin-
ciples in Kendall et al. (2017), where we use Softmax and
differentiable argmin to regress initial disparity predictions
dinit.

Disparity Refinement
Although the transformer can compute a reasonable dispar-
ity map, the model is prone to noises due to low-resolution
processing, such as depth discontinuities and outliers. To re-
cover fine-grained details, we directly use the Context Ad-
justment Module described in Li et al. (2021), using the left
input image as a reference to compute a refined disparity.

Training Objective
We train our model in an end-to-end supervision manner.
Specifically, we supervise all disparity output with Smooth
L1 loss, due to its robustness to outlier sensitivity like dis-
parity discontinuities. The loss is given by Equation 6, where
dinit denotes the disparity prediction from Transformer and
soft-argmin, and drefine denotes the output disparity from dis-
parity refinement module. We set λ0 = 1.0 and λ1 = 1.1

L = λ0SmoothL1(dinit, dgt)+

λ1SmoothL1(drefine, dgt)
(6)
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Figure 3: (a) Illustrates the format and layout of the attention
map directly acquired from the Transformer. Each window
represents a local relative matching score. (b) We roll on the
disparity dimension, so each pixel stores a disparity prob-
ability vector instead of a relative matching score. (c) The
matching score is de-partitioned to retrieve unaries cost vol-
ume for disparity regression.

Related Work
Brief History of Stereo Matching
Early Stereo Methods. Early stereo techniques are
primarily split into global and local methods. While
global methods commonly utilize dynamic program-
ming Hirschmuller (2008); Ohta and Kanade (1985);
Forstmann et al. (2004), graph cut Hong and Chen (2004),
or generative modeling Geiger, Roser, and Urtasun (2010).
Local methods center on processing similarity within lo-
cal windows, such as Patchmatch in Bleyer, Rhemann, and
Rother (2011) or Siamese Networks Zbontar and LeCun
(2015); Zagoruyko and Komodakis (2015); Luo, Schwing,
and Urtasun (2016); Shaked and Wolf (2017).

Correlation Cost Volume. The advent of deep learning
has significantly transformed the field of stereo matching,
steering it towards end-to-end methods. Pioneering this shift
was DispNetC Mayer et al. (2016), which introduced the
first stereo work in this category. The network utilised a cor-
relation layer that computed dot products between two im-
age features from an encoder for cost construction, followed
by convolution layers for disparity calculation. Following on
the same principle, Pang et al. (2017); Liang et al. (2018) ex-
tends Mayer et al. (2016) with a disparity refinement mod-
ule. Other researches such as Song et al. (2019); Yang et al.
(2018) improved upon Mayer et al. (2016) by integrating vi-
sual cues into stereo training pipeline. AANet Xu and Zhang
(2020) brought forth a novel approach by implementing a
multi-scale correlation cost with an innovative aggregation
method.

4D Cost Volume. In opposition, GCNet Kendall et al.
(2017) adopted a different approach for cost volume con-
struction, building cost volumes by left-right feature con-
catenation at varying disparity levels, thereby forming 4D
cost metrics. Much recent incremental work Chang and
Chen (2018); Zhang et al. (2019); Tulyakov, Ivanov, and
Fleuret (2018); Khamis et al. (2018); Duggal et al. (2019);
Yang et al. (2019); Nie et al. (2019); Xu and Zhang (2020);
Zhang et al. (2020) have employed the same cost construc-
tion in their model pipeline. GWCNet Guo et al. (2019)
and ACVNet Xu et al. (2022) uses a hybrid cost construc-
tion encompassing correlation and concatenation Mayer et

al. (2016); Kendall et al. (2017) costs through a group-wise
correlation volume. Duggal et al. (2019); Shamsafar et al.
(2022) address the efficiency concern associated with 3D
Convolution. Cheng et al. (2020); Wang et al. (2022) uses
AutoML techniques to search for efficient stereo architec-
tures.

Transformer Based Stereo Matching. Among the works
closely related to ours is the STTR Transformer Li et al.
(2021), which may be seen as a special case of a feature
matching Sarlin et al. (2020). STTR employs a Transformer
layer to conduct pixel-wise matching along epipolar lines.
The model also relies on external mechanisms such as the
Sinkhorn algorithm to ensure one-to-one constraints. We
contend that pairing all pixels may not be essential, since
maximum disparities is proportion to baseline distance, and
that affects the area of overlapping region. Thus, it is more
advantageous to search correspondences within these areas.
Our inspiration is to perform matching in local rectangle
windows within a limited extent. Moreover, our method em-
phasises more on exploiting the modelling ability of Trans-
former, without the need for external matching modules.

Transformer for Vision Networks
Transformer Vaswani et al. (2017) demonstrated their vast
success in language modelling with self-attention layers. In
recent years, we see more presences of Transformer in com-
puter vision literatures. Despite the robustness of Transform-
ers, they come with a drawback - their computational com-
plexity escalates quadratically with larger inputs. To address
such issue, Swin Transformer Liu et al. (2021) proposes
to perform self-attention within local windows, with diag-
onally shifted scheme to capture global dependencies. Our
work can be considered a specific variant of the Swin Trans-
former, featuring several key adaptations, including rectan-
gular windows, epipolar shifts, and attention score calibra-
tion. These simple yet effective changes improve the robust-
ness of Transformers for stereo matching tasks.

Experimental Result
In this section, we verify our approach through three princi-
pal experiments:
• Ablation Studies: We dissect and analyse the significance

of each component in our model.
• Stereo Adversarial Attacks: We test the model’s practical

performance and robustness.
• Model Comparisons: We benchmark our model against

published methods on popular stereo datasets.

Setup
Dataset. We employs four public datasets for our eval-
uation. ➀ SceneFlow Mayer et al. (2016) is a synthetic
dataset used for pre-training and ablation experiments. ➁
KITTI 2015 Menze and Geiger (2015), a real-world dataset
with driving scenes, is used for fine-tuning and testing.
➂ ETH3D Schöps et al. (2017), an indoor and outdoor
grayscale dataset. ➃ Middlesbury Scharstein et al. (2014),
an indoor scene dataset, are used for testing without fine-
tuning. ➄ MPI Sintel Butler et al. (2012), a synthetic dataset
of animated films, is also used for testing without any fine-
tuning.



Evaluation Metric. We report our results in the follow-
ing metrics: End-Point-Error (EPE), D1(%), 1-Pixel(%), 2-
Pixel(%), and 3-Pixel(%) errors. The maximum disparity
value is set to 192.

Implementation. Our framework is implemented in Py-
Torch and is available through a GitHub link (hidden for
submission). We train our model using AdamW, with an ini-
tial learning rate of 0.001 and a weight decay of 0.0001. We
employ the OneCycle training scheduler Smith and Topin
(2019) for reducing the learning rate. All weights are ini-
tialized using Kaiming Initializer. During the training phase,
we augment the input images, including random cropping to
288×512, and asymmetric chromatic jittering on brightness
([0.5, 2]), gamma ([0.8, 1.2]) and contrast ([0.8, 1.2]) Yang
et al. (2019). We train the network on four Nvidia V100
GPUs with a batch size of 8 image pairs.

Ablation Experiment
We conduct ablations to evaluate the importance of each
component within our network. Each component is removed
and substituted with an alternative counterpart. Ablation re-
sults are presented in Table 1. Unless otherwise specified,
the ablated models are trained on the FlyingChair3D for a
total of 120,000 steps.

Effectiveness of our Attention Layer. The attention layer
plays a crucial role in generating high-quality deep features
for matching. In the first setting, we use a Transformer layer
devoid of cross-attention, except for the last layer. We also
compare our setting with the alternating self and cross at-
tention as in Li et al. (2021); Sun et al. (2021). Our find-
ings indicates that our Transformer can deliver superior per-
formance, trading-off only a minor increase in parameters
count. We present the result in Table 1a.

Window Size. The width of the rectangular window size
defines the search range for a pixel. To understand their role,
we train models with different window sizes to find the op-
timal choice, while keeping the maximum disparity set to
D = 192. The results are presented in Table 1b. Decreas-
ing the window width does not lead to stereo collapse, but
it prompts a substantial drop in EPE. Conversely, increas-
ing the window width does not necessarily enhance per-
formance. Our findings suggest that a small vertical width
generally improves performance, but expanding the window
height results in performance degradation. We hypothesize
that vertical aspect brings additional spatial context into con-
sideration during matching. When we set windows to 8×48,
the computation burden leads to out-of-memory.

Shifting Operations. Our approach employs an epipolar
shift to expand the search range. To assess the usefulness
our shifting process, we train four models with 4 × 48 win-
dows to predict two disparity ranges, D = 96, D = 192,
each equipped with either a diagonal Liu et al. (2021) or an
epipolar shifting operation. The results are reported in Ta-
ble 1c. At a lower disparity search range of D = 96, the
epipolar shift does not contribute, as a local window can
cover the whole range. However, upon increasing D to 192,

it becomes more apparent that the epipolar shift enhances
overall performance.

Positional Encoding. As stereo matching concerns the
monotonic ordering property. Positional information con-
tributes how the model learns the matching correspondence.
We therefore compare the result of absolute position em-
bedding (APE), learnable relative position bias (LRB), and
the combination of both. We find that combining both types
of positional encoding doesn’t significantly enhance perfor-
mance; We solely employ LRB in our method as it outper-
forms others. The results of this comparison are presented in
Table 1d.

Stereo Adversarial Attack
A significant barrier to stereo deployment lies in the calibra-
tion differences between the actual industrial product and the
experimental setup, which can easily result in domain shifts.
This section employs adversarial attacks as an analogy to
simulate real-world stereo matching scenarios.

Wide Baseline. Commercial applications demand varied
stereoscopic configurations, such as larger stereo baselines
for self-driving cars versus smaller ones for mobile phones.
To simulate large disparities, we adjust the padding of the
target-view image. This is achieved by introducing ∆D (ex-
tra baseline distance) on the right border. During evalua-
tion, we pad the target image on the right border and ap-
ply truncation on the original image boundary. We set val-
ues of ∆D as 60, 80, 100, 120 and report the outcomes in
Table 2. We compare our performance with the 3D Conv-
based GWCNet Guo et al. (2019) and Transformer-based
STTR Li et al. (2021). Our method demonstrates more ro-
bustness and suffers less degradation than other methods,
except for ∆ = 120 due to the limited window size in our
design.

Visually Imbalance Setup. Budget-limited smartphones
with dual-lens settings often feature a master camera com-
plemented by a less expensive slave camera Liu et al. (2020),
resulting in differing resolutions for stereo inputs. To simu-
late this effect, we downsample the target view by a scale
factor s and then upsample to its original resolution via bi-
linear interpolation. We set s to 1×, 2×, 3×, 5×, 8×, 12×,
15×. We report our results in Table 3, where we mark the
stereo collapsing point in purple. We show the visualisation
result in Figure 4. STTR deteriorates quickly within small
s and worsens more severely as s progresses. GWCNet still
performs coarse matches at high downgrade levels. Compar-
atively, our model experiences less degradation and able to
acquire general object details in the disparity map across all
scale factors.

Quantitative Comparison
In this section, we compare our models with PSMNet Chang
and Chen (2018), which utilizes a 3D convolution ap-
proach for concatenation-based cost processing; AANetXu
and Zhang (2020) an efficient 2D convolution approach
for correlation cost processing; GWCNet Guo et al. (2019)
is a hybrid approach that combines concatenation and
correlation-based cost volumes; CFNet Shen, Dai, and Rao



Transformer Type EPE 3-Px D1 Param(M)

w/o Cross 1.35 7.13 5.6 3.76
Alternating 0.92 3.83 2.86 3.76
Ours 0.86 3.73 2.65 3.79

(a) We compare various attention methods in our analysis. Our
attention layer demonstrates superior performance compared to
alternating self and cross-attention mechanism.

Window Size EPE 3-Px Time(s)

1×48 0.98 3.5 0.9
2×24 0.99 3.81 1.0
2×48 0.89 3.74 1.2
2×96 1.05 4.05 1.3
4×24 0.95 3.81 0.9
4×48 0.86 3.73 1.2
8×24 0.99 5.38 1.0
8×48 OOM OOM OOM

(b) Choices for local rectangle window size. 4 × 48 leads to
most optimal performance

Models D=96 D=192

EPE 3-Px EPE 3-Px

Diagonal Shift 0.67 2.34 0.95 4.36
Epipolar Shift 0.74 2.63 0.86 3.73

(c) Our proposed epipolar shifting proves beneficial for larger dis-
parity search range.

EPE 3-Px D1

APE 0.90 4.12 2.59
LRB 0.86 3.73 2.65
APE + LRB 0.87 3.86 2.60

(d) Using only the learnable relative position bias (LRB) yields op-
timal performance than absolute position encoding and combination
of both.

Table 1: We present the results of our ablation study, which aims to analyse the significance of each component in our model.

(2021), a 3D convolution approach that focuses on domain-
generalisation; STTR Li et al. (2021), a more recent stereo
network based on Transformers.

Evaluation on Scene Flow. Our results, presented in Ta-
ble 4, show that our method surpasses others in terms
of EPE, while utilizing fewer parameters than convolution
models. Additionally, when comparing our visualization re-
sults with Li et al. (2021), as shown in Figure 5. It’s evident
that our model show advantage in retaining more image de-
tails, especially in complex environments.

Evaluation on KITTI. We conduct fine-tuning on the
KITTI dataset using a model entirely pre-trained on Scene-
Flow, allocating 20 out of the 200 images for validation. The
benchmark result on the KITTI leaderboard is provided in
Table 5. Our performance is inferior to other models, par-
ticularly to GWCNet and STTR. We propose that the sub-
optimal performance may be attributed to the small size of
the dataset and the lack of inherent inductive bias typically
found in Convolution layers.

One possible way to improve our model performance on
KiTTI could be fine-tuning it on a larger dataset, such as
Virtual-KITTI Cabon, Murray, and Humenberger (2020).
We regard this as future work while remaining a fair com-
parison with other model setting.

Evaluation on Generalisation Ability. All end-to-end
stereo networks are susceptible to domain shifts, potentially
leading to performance degradation. We believe that gener-
alisation ability has important practical implication. Thus,
we evaluate our model without fine-tuning using the train-
ing split of Sintel, Middlesbury, and ETH3D, as well as the
KITTI-2015 Guo et al. (2019) training split, all of which
represent various degrees of domain shifts. Our generaliza-
tion results, reported in Table 6, show only minor domain

∆D 60 80 100 120

GWCNet 3.05 3.26 3.87 3.99
STTR 3.50 4.05 4.41 4.99
Ours 3.02 3.19 3.60 4.60

Table 2: EPE performance comparison of stereo algorithms
at different extra baseline distances. Our model can handle
a reasonably large disparity change when s < 120. For the
case where s = 120, concatenation-based volume suffers
from less degradation.

s 1 2 3 5 8 12 15

GWCNET 0.79 0.80 0.82 0.95 1.35 3.12 4.05
STTR 0.50 0.51 0.52 0.57 0.85 3.67 8.01
Ours 0.47 0.49 0.54 0.59 0.74 1.34 1.75

Table 3: EPE performance comparison of stereo algorithms
under varying imbalance factors s. The purple marker in-
dicates the performance collapse point for the stereo algo-
rithms. Unlike other models, our model continues to perform
accurately even when the imbalance factor s is significantly
large.

shifts in Sintel, KITTI, and Middlesbury. Our model per-
forms on par or even outperforms other models on these
datasets. However, ETH3D, which has the most significant
domain gap due to grayscale images with substantial random
exposures, shows lower performance without fine-tuning.
Our model can withstand and handle minor domain shifts.
We provide visual comparisons for Middlesbury Quarter and
Sintel datasets in Figure 6 and 7.

Limitation & Discussion
Our model assumes the occluded regions are locally smooth,
but occlusions commonly occur in the real world. Therefore
method to hand occlusions is an essential task for practical



Model EPE 3-Px(%) Param(M)

PSMNET 1.06 4.11 5.2
AANET 0.81 3.32 3.9
GWCNET 0.77 3.30 6.5
CFMet 0.93 4.08 23.1
STTR 0.50 1.54 2.8
Ours 0.44 1.96 3.8

Table 4: Quantitative comparison on Scene Flow test set.
Bold denotes the best, Underline denotes the second best.
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(a) 8× (b) 12× (c) 15×
Figure 4: Stereo matching performance under various imbal-
ance factors s = 8×, 12× and 15×. STTR fail at s ≥ 12.
Our model can recover a coarse disparity estimate at an ex-
treme imbalance factor.
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Figure 5: Visualization comparison on SceneFlow.
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Figure 6: Generalization comparison on Middlebury
Quarter-Resolution dataset. Our model can recover more
structural, edge and boundary details.

All No Occ
d1-
bg

d1-
fg

d1-
all

d1-
bg

d1-
fg

d1-
all

PSMNet 1.86 4.62 2.32 1.71 4.31 2.14
AANet 1.99 5.39 2.55 1.80 4.93 2.32
GWCNet 1.74 3.93 2.11 1.61 3.49 1.92
CFNet 1.54 3.56 1.88 1.43 3.25 1.73
STTR 1.70 3.61 2.01 - - -
Ours 1.81 3.92 2.16 1.67 3.53 1.97

Table 5: Results on the KITTI Benchmark leaderboard. We
finetune the model on the model pre-trained on SceneFlow.
D1 denotes precentage of disparity pixels that are <3px and
<5%

Model KITTI Sintel Middlesbury ETHHalf Quarter

PSMNet 1.39 3.31 25.1 14.20 23.80
AANet 1.31 1.89 42.8 35.79 30.44
GWCNet 1.59 1.42 34.20 18.10 30.10
CFNet 1.34 1.29 19.5 13.73 5.8
STTR 1.50 3.01 OOM 17.19 17.09
Ours 1.37 1.40 19.2 12.8 20.57

Table 6: Generalisation results on KITTI-15, MPI Sintel
Middlesbury and ETH3D. Models are trained on Scene-
Flow without fine-tuning. For KITTI-15 and Sintel, we re-
port EPE. For Middlesbury, we report 2-Px. For ETH3D, we
report 1-Px

stereo, which is currently missing in our literature. Addi-
tionally, Transformers are dependent on large datasets due
the the absence of inductive bias. This dependency is more
noticeable in our KITTI benchmark, where the Transformer
suffered significant degradation due to the limited sample
size. New training paradigm or datasets can be used for en-
hancement when data is not readily available.

Conclusion
We have presented a recipe to perform Stereo Matching
using self and cross-attention within rectangular shift win-
dows. Extensive experiments have verified that our perfor-
mance aligns with that of existing models. It is our hope that
our research will provide fresh perspectives and stimulate
further exploration within the stereo matching community.
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Figure 7: Generalization comparison on MPI Sintel. Best
viewed when zoomed in.
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Figure 8: Illustration of our self and cross-attention. (a) illus-
trates the procedure involved in computing self and cross-
attention, while (b) showcases the content of attention en-
capsulated within the attention score. Here sh and sw de-
notes window height and width respectively.

Appendix A. More Details about Transformer
Our model primarily relies on the Transformer, and here we
provide a more comprehensive explanation of self and cross-
attention, with Figure 8 serving as a visual aid. Figure 8a il-
lustrates the flow of attention within a local window. In Fig-
ure 8b, we display the distribution of self and cross-attention
information within the resulting attention score.

Additionally, we describe the architecture of a stage in
Figure 9. Each stage comprises four layers. In the second
layer, attention windows for both features shift diagonally.
In the fourth layer, only the attention windows of the target
view feature are horizontally displaced towards the search
direction. Notably, in the final stage, the concatenated atten-
tion score is output as the matching score.

Appendix B. Feature Visualisation and
Interpretation

As previously noted, robust matching primarily hinges on
a strong feature representation ability, especially in the con-
text of stereo challenges, such as textureless regions. To gain
the most intuitive insight into what the Transformer learns,
we apply PCA reduction from SCI-KIT LEARN to the out-
put feature from the final Transformer layer. The results are
presented in Figure 10. This visualization indicates that our
layers can extract significant semantic cues, such as object
boundaries and edges, and can differentiate between fore-
ground and background areas. These cues embody the nec-
essary geometric knowledge for performing matching in ill-
posed regions.

Appendix C. Additional Visual Results
We provide further qualitative results of our model
and STTR on SceneFlow, KITTI-2015, MPI Sintel, and
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Figure 9: Depiction of a stage in our Transformer. Each stage
incorporates four Transformer layers. In the first two lay-
ers (depicted in blue), the Transformer employs 8×8 square
window partitioning with overlapping diagonal shifting. In
the final two layers (illustrated in green), the Transformer
utilizes 4×48 rectangular window partitioning with epipolar
shifting.

Middlesbury-Quarter.

SceneFlow Additional visual comparisons are presented
in Figure 11. All models are pre-trained on Scene Flow.

KITTI-2015. Visualization results for the KITTI-2015
test set are displayed in Figure 12. All models are ini-
tially trained on Scene Flow and subsequently fine-tuned on
KITTI 2015. Our model is somewhat less effective for this
dataset. Given that KITTI comprises a smaller dataset with
only sparse disparity point clouds for non-distant areas. As
such, the training process becomes challenging, and that the
Transformer struggles to generalise. Consequently, artifacts
are noticeable in regions where ground truth disparities are
absent during training.

Middlesbury. Additional quantitative results on samples
from the Middlesbury Quarter Resolution Dataset are pro-
vided in Figure 13. All models are trained on Scene Flow
without any fine-tuning.
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Figure 10: PCA visualization results. Our Transformer is capable of extracting features with meaningful semantic representa-
tions essential for stereo matching.
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Figure 11: More visual comparison on Scene Flow.



Image1

Image2

STTR

Ours

Figure 12: Visual comparison on KITTI 2015 test split. Noticeable artifacts can be observed in regions where disparities are
absent during training.
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Figure 13: More generalisation visual results on Middlesbury Quarter Resolution Dataset.


