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ABSTRACT

Hyperspectral images (HSIs) classification has been widely
employed in remote sensing applications, due to their pro-
ficiency in using hundreds of spectral bands to distinguish
material precisely. While existing learning based approaches
such as Convolutions, RNN or Transformer have achieved
vast success, we demonstrate that a simple multi-layer per-
ceptron (MLP) baseline can excel in this task. This is at-
tributed to the fact that HSI classification primarily involves
detecting unique spectral peak patterns, thus a simple model
can already be well-suited. Our experimental results vali-
date that our MLP outperforms well-known models on four
datasets. Furthermore, we conduct analysis to understand the
effect by modifying various elements in the model.

Index Terms— Hyperspectral Image, Classification

1. INTRODUCTION

We study Hyperspectral Image (HSI) Classification, a tech-
nique that unveils the unseen beyond our human visible spec-
trum. Unlike traditional images comprise of three spectral
bands (Red, Green, Blue), HSI can extend up to few hun-
dreds bands. Each pixel in an HSI contains a spectral signals,
with multiple signal peaks correspond to specific wavelengths
at which materials exhibit significant reflectance or absorp-
tion. HSIs are commonly used in satellite remote sensing, to
oil spill detection, early cancer diagnosis and environmental
monitoring.

Many of the most notable models for HSI classifica-
tion leverage machine learning techniques, as documented
in [1, 2]. Including but not limited to Support Vector Machine,
Markov random fields, Convolutions, Recurrent Networks,
Transformers. In addition, current research also explores
varying learning paradigms for this task, such as Contrastive
Learning [3] and Few shot Learning [4]. These models
marked a significant milestones in this field. Nonetheless,
this research aims to challenge the necessity of employing
such complex models for achieving effective HSI classifica-
tion. It prompts the question: Is it feasible to design a simpler
model for this task?

Therefore, we simplify our approach to the most basic set-
tings. We showcase that effective HSI classification can be

accomplished using only Multilayer Perceptron (MLP) lay-
ers. Drawing inspiration from [5, 6], HSI classification is
not more complicating than identifying spectral similarity and
peak patterns within each classification class. All we need is
to perform regression over the spectral channel of HSI pixels
with MLP layers, thereby allowing it to learn intricate spectral
patterns.

By employing a simple Multilayer Perceptron (MLP)
baseline, our model not only achieves state-of-the-art quan-
titative performance, but also demonstrates efficiency. To
validate our claims, we conducted comprehensive evaluations
on four datasets: Indian Pines, Salinas, Kennedy Space Cen-
tre, and Botswana. The results demonstrate that our model
surpasses convolutional, RNN, and Transformer models in
terms of both accuracy and efficiency. Additionally, We per-
formed analysis on model component to gain an intuitive
understanding of our method.

Our research has substantial potential for practical appli-
cations in the field of HSIs. The inherent simplicity of our
proposed model has the potential to streamline hardware de-
ployment processes, similar to the approach presented in [7].
We provide discussions on related work, proposed methodol-
ogy, and experimentation in the following sections.

2. RELATED WORK
2.1. Hyperspectral Image Classification
In this section, we summarize some of the works conducted
in HSI classification. Chen et al. [8] were among the pioneers
to explore MLP for HSI classification. Their approach in-
volved applying PCA to reduce the spectral dimension of the
HSI cube, followed by MLP layers for classification. Sub-
sequently, a large body of research focused on utilizing 3D
Convolutions (3D CNN), due to their ability to jointly pro-
cess spatial and spectral dimensions. For instance, Chen et
al. [9] employed 3D CNN on HSIs with virtual samples to
address the issue of limited training data. Li et al. [10] uti-
lized a new 3D CNN architecture conceptually similar to [9],
but with smaller kernels to reduce model size and enhance
accuracy. Zhong et al. [11] incorporate fully residual connec-
tion to reach performance gain. Ahmad et al. [12] extended
the work of [8] by applying 3D CNN to PCA-reduced HSIs.
Roy et al. [13] proposed a hybrid architecture that combines
3D and 2D CNNs to facilitate dual spectral-spatial feature



learning. He et al. [14] introduced multi-scale CNN kernel
as an efficient method to mitigate the need for spectral reduc-
tion algorithms. Liu et al. [7] optimized the approach in [15]
by employing fixed kernel sizes throughout the CNN model,
enabling efficient hardware deployment.

Unlike Convolution, sequential models such as RNNs or
Transformer offer a global perspective for processing HSI
spectral information. For examples, Mou et al.[16] adopt
a sequential approach to HSI classification by treating each
spectral signal as a sequence vector, using Gated Recurrent
Unit with customised activation functions. The remarkable
success of Transformers in vision domain has led to their
adaptation for HSI as well. For example, Hong et al. [17]
employ Transformer layers to compute self-attention across
the whole spectral dimension. In addition, they introduce
group-wise spectral embedding and cross-layer adaptive fu-
sion as extensions to the Transformer backbone, enabling the
model to learn more local spectral representations.

2.2. Discussion
The current body of work in HSI classification has primarily
focused on the use of 3D CNNs. While these models have
demonstrated their ability to model spatial-spectral informa-
tion and extract discriminative features from HSIs, they often
overlook global dependencies, particularly along the spectral
dimension. Additionally, the use of 3D convolutions adds
complexity to the model pipeline. Attempts to alleviate this
complexity through PCA dimension reduction techniques
may incur information loss and degrade performance.

On the other hand, both RNNs and Transformers have the
advantage of processing the entire spectral signals globally.
However, RNNs cannot be easily parallelized due to their
sequential nature. Transformers, while capable of capturing
global dependencies, can exhibit high intra-block complexity
due to self-attention computations. Furthermore, Transform-
ers often require large amounts of labeled data due to their
lack of inductive bias, raising questions about their suitability
for HSI classification, especially with limited labeled sam-
ples.

In this work, we revisit the approach proposed in [8]. The
key difference lies in our use of independent regression on
spectral channels before classification layers. Our method can
also be considered a simplified version of the Transformer,
where we replace self-attention with MLP as a drop-in re-
placement.

3. METHOD

We present our simple MLP baseline model below. We first
extract the nearest neighbor patch from the HSI. This patch
is then fed into an MLP layer, which performs regression
over the spectral dimension, thereby producting a latent fac-
tor. Subsequently, we flatten this latent vector and fit forward
to a second MLP for classification. A detailed illustration of
this model can be found in Figure 1.

MLP & LayerNormPreprocessing Flatten & Classification

Fig. 1: Illustration of our Simple MLP Model architecture.

3.1. Pre-Processing
HSIs can be described visually as 3D cubes, where each
spatial pixel represents a 1-dimensional vector containing
wavelength information. Considering the high correlation
and shared characteristics among neighboring pixels in HSIs,
we extract 3D HSI patches instead of processing a 1D spec-
tral vector. Given a hyperspectral cube H ∈ RH×W×B ,
where H , W denotes height and width, B represents the
number of spectral bands. We extract local patches using
nearest-neighbor strategy. These patches are represented as
(x1, x2, ..., xn) ∈ Rp×p×B , where p denotes the patch size.
The truth labels of xi are determined by the label of the
central pixel within the patch.

3.2. The Simple MLP Baseline
Our simple MLP baseline, consists of only two linear layers.
The primary purpose of this model is to directly regress over
the spectral dimension to extract features and perform classi-
fication. The formal expressions for the model are as follows:

hi = σ(LayerNorm(W1xi))

yi = W2hi

The first layer is shown as W1RB×B ∈, and is responsi-
ble for regressing over the spectral axis to capture signal pat-
terns. We then incorporate LayerNorm, which promotes more
stable training and reduces internal covariate shifts. σ denotes
the activation function, for which we opt Gaussian Error Lin-
ear Unit as default. The second layer W1 ∈ R(p×p×B)×ccls ,
takes the flattened latent vector from h and computes a proba-
bility logit. The output logits are then used to predict the class
labels.

4. EXPERIMENT
4.1. Setup
Dataset Description. We use four benchmark datasets are
used to evaluate our proposed model. These include Indian
Pines, Salinas, Kennedy Space Centre (KSC) and Botswana.
The spectral bands for these datasets are 200, 204, 176 and
145 respectively. For Indian Pines and Salinas, we select
10%, 5% and 85% as training, validation and testing split. For
KSC and Botswana, we select 15%, 5% and 80% as training,
validation and testing split.



Indian Pines Salinas KSC Botswana
OA AA κ OA AA κ OA AA κ OA AA κ

Conv3D 75.81 77.84 71.92 93.34 96.75 92.57 80.29 77.65 77.95 95.04 95.24 94.62
SSRN 83.12 84.02 80.41 94.80 97.67 94.22 75.01 68.11 71.81 97.73 97.64 97.54
HybridSN 87.89 87.09 86.00 96.61 98.26 96.21 83.45 73.55 81.57 97.29 97.68 97.50

RNN 84.52 83.80 82.17 91.90 94.50 90.96 54.30 41.60 47.87 66.90 68.88 64.15
ViT 75.13 73.98 71.52 90.68 92.87 89.62 37.78 31.68 35.46 51.52 52.72 47.43
SpectralFormer 85.06 86.30 84.35 91.41 94.45 90.41 31.78 31.63 34.80 82.12 82.88 80.63

Ours 88.06 89.26 87.24 96.90 98.54 96.54 80.57 73.33 78.31 97.65 97.71 97.54

Table 1: Classification results for the Indian Pines, Salinas, Kennedy Space Center, and Botswana Datasets. Values highlighted
in blue represent the best results, while those in red denote the second-best results. All metrics are reported as percentages (%).

Implementation. To train our MLP baseline model, we uti-
lize cross-entropy as the loss function to capture the distribu-
tion of our dataset. We select Adam optimizer to update the
weights and biases of our model, with an initial learning rate
of of 0.0001, β1=0.9 and β2=0.999. We trained our model on
a single 2080Ti, where batch size are set to 256. We set the
pre-processing patch size to p = 3. This patch size allows us
to best capture local spatial and spectral information.
Evaluation Metrics. The classification performance of each
model is quantitatively evaluated using three widely used in-
dices, all reported in percentage (%). Overall Accuracy (OA)
measures the proportion of correctly classified examples over
the total test examples, while Average Accuracy (AA) repre-
sents the average classification performance across all classes.
Cohen’s Kappa (κ) is a metric to evaluate classification re-
sults where the class distribution is imbalanced. All reported
results are the average over 5 trials.
Comparison Models. To ensure a comprehensive com-
parison, we selected several widely-used and highly-cited
baseline models from different categories. In the convolution-
based model category, we have chosen 3DCNN [10], SSRN [11],
HybridSN [13]. For recurrent network-based models, we se-
lected RNN [13]; In the Transformer-based model category,
our choices include ViT [17] and SpectralFormer [17].

4.2. Quantitative Evaluation.
We present the comparison of our model with other baseline
models in Table 1. Despite its simplicity, our model achieves
competitive results and outperforms other models based on
the designed metrics, except for the KSC dataset, where it is
ranked second after HybridSN. A visualization of these results
can be found in Figure 2. Botswana is omitted in the figure
due to limited space.

4.3. Computational Analysis
We access the practical performance and reported ours re-
sults in Table 2. Our minimalist design has led to large re-
ductions in MACs, parameter counts, and inference time. In
theory, 3D CNNs can have a computational complexity of

Model MACs Inference Time Parameter

Conv3D 0.82G 55.7s 2331K
SSRN 0.18G 151.2s 575K
HybridSN 3.04G 79.5s 6699K

RNN 0.03G 163.1s 4297K
ViT 0.02G 201.1s 105k
SpectralFormer 0.04G 84.2s 429K

Ours 0.41M 17.7s 60K

Table 2: Computational analysis across all evaluated models.

O(N3K3CinCout), where N , K, C represent the spatial-
temporal, kernel and channel dimensions. RNN and Trans-
former have complexities of O(Bd2) and O(B2d), with d de-
notes the hidden dimension. In contrast, our model regress di-
rectly on spectral dimension only, resulting in O(B2), which
makes our model more efficient to others.

4.4. More Analysis

Importance of LayerNorm. We observe the crucial role of
Layer Normalization (LayerNorm). Table 3 presents the ef-
fect of removing the LayerNorm layer from the MLP, show-
ing in a significant performance drop upon its removal. We
hypothesize that LayerNorm plays a vital role in mitigating
optimization weakness, particularly when the simple model
has limited expressiveness and train on small sample set.

OA AA κ

None 83.62 84.21 81.67
LayerNorm 88.06 89.26 87.24

Table 3: Effect of Layer Normalisation on our Model. Re-
sults are evaluated on the Indian Pines Dataset.

Normalizing Peak Signals. To validate our claim that effec-
tive HSI classification requires only detecting spectral peaks
patterns, we conducted an experiment where we intention-
ally removed signal peaks to increase the difficulty of spectral
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Fig. 2: Visualisation maps obtailed from all compared Models. From top to bottom: Indian Pines, Salinas, and KSC.

classification. We use two signal normalization algorithms: ➀
Gaussian smoothing, for suppressing high-frequency compo-
nents with kernels, and ➁ Median filtering, which replaces
outlier data point with the median value within a window.

Our assumption was that if peak signals are reduced in
the HSI data, our model would struggle to classify HSI pixels
accurately, leading us to resort to more complex models. We
validated this assumption and reported the results in Table 4.
After signal normalization, our model’s performance deterio-
rates, while the Transformer model was still able to achieve
reasonable performance, as they’re designed to capture com-
plex pattern. This experiment further supports our claim that
our simple baseline model is already effective for HSI classi-
fication, as HSI more concerns detecting signal peaks pattern,
where a simple model can achieve the same.

Guassian Filtering Median-Filtering
OA (%) AA (%) OA (%) AA (%)

SpectralFormer 84.76 82.26 84.13 85.74
Ours 84.31 84.14 83.98 83.81

Table 4: Effects of normalizing HSI spectral signals on clas-
sification performance. Results are evaluated on Indian Pines
Dataset.

Effect of Patch Sizes. We aim to explore the significance of
spatial information in the context of classification. Incorpo-
rating neighboring pixels to form patches can help compen-
sate for the absence of spatial context. We varied the patch

sizes, reporting the results in Table 5. Our model demon-
strated optimal performance when the patch size p was set
to 3. Further increasing patch size does not improve perfor-
mance, instead, it led to a deterioration in accuracy. We hy-
pothesize that an overly large patch size introduces too much
contextual variable that prevent model to coverage.

p = 1 p = 3 p = 5 p = 8

OA (%) 82.84 89.15 84.73 84.84
AA (%) 83.78 88.64 85.84 82.94
κ (%) 80.29 87.42 82.34 82.63

Table 5: Effect of Patch Sizes. Results are evaluated on In-
dian Pines Dataset.

5. LIMITATION & CONCLUSION

Limitations. A limitation of our study is that we did not
account for class imbalances, which occurs frequently in HSI
datasets. For instance, natural elements often outnumber
man-made structures in satellite imagery, which can affect
the model’s performance.
Conslusion. In summary, we have demonstrated that a sim-
ple Multilayer Perceptron (MLP) can surpass the performance
of established models for HSI classification. Our findings
prompt further inquiries into what constitutes an effective HSI
classification model. We hope that our research will con-
tribute to enhancing the practical applicability of these models
in real-world applications.
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